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A new two-parameter integral method is presented which is applicable to unsteady 
two-dimensional laminar boundary layers whether they are separated or not. The 
governing equations consist of three moments of the boundary-layer equation, and 
the assumed velocity profiles are those of unsteady trailing-edge flow and Falkner- 
Skan flow with slip. The governing equation system being hyperbolic, the spontaneous 
generation of a singularity associated with unsteady separation is confirmed as the 
focusing of characteristics. The obtained results of the boundary-layer quantities as 
well as the generation of separation singularity are in good agreement with those of 
exact methods (e.g. van Dommelen & Shen 1980) for starting flows of cylinders. 

1. Introduction 
For steady two-dimensional boundary-layer flow, separation is defined by the point 

of vanishing wall shear, and reversed flow exists adjacent to the wall downstream 
of this point. It also happens to be a singular point of the solutions of the 
boundary-layer equation with prescribed pressure distribution, and numerical solu- 
tions blow up as this point is approached. The singularity is an exaggerated 
simulation of the actual rapid thickening of the boundary layer, and the occurrence 
of the singularity indicates the need for local modifications in the boundary-layer 
problem. Interactive boundary-layer theory, taking account of the modification of 
pressure distribution by the presence of boundary layers themselves, gives solutions 
of separated and reattached flows free of singularity (Williams 1977). 

In  unsteady boundary-layer flow with a prescribed pressure distribution, the point 
of vanishing wall shear or onset of reversed flow has no special significance, unlike 
steady flow, nor is it  a singular point in general. This fact has been established through 
a number of analyses and calculations, as reviewed by Sears & Telionis (1975), 
Williams (1977) and Telionis (1981). We should also refer to the works of Proudman 
& Johnson (1962) and Nagata, Minami & Murata (1979). Proudman & Johnson 
analysed the boundary-layer growth near a rear stagnation point on a cylinder set 
into motion impulsively from rest and observed that the initial-value problem has 
a well-behaved solution for all finite time, regardless of the vanishing wall shear and 
the subsequent reversed flow predicted by the classical series solution. Nagata et al. 
made a visualization study of starting flow of a circular cylinder using both 
hydrogen-bubble techniques and electrolysis methods. They confirmed that the 
location and time of the first appearance of reversed flow, which is detected by the 
hydrogen-bubble technique, are in good agreement with the classical theory and that 
the initial stage of the reversed flow does not lead to an abrupt thickening nor 
breakaway of the boundary layer. Furthermore, they observed by the electrolysis 
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method that the ejection of vorticity produced on the body surface toward the 
external stream occurs farther after the first appearance of reversed flow. 

Sears & Telionis (1975) contended that blow-up of the unsteady boundary-layer 
solution for a prescribed pressure distribution, rather than reversal of flow direction 
a t  the wall, signals the termination of boundary-layer type flow and that this 
phenomenon is the natural generalization of ' boundary-layer separation ' to the 
unsteady flow. They also advocated that it appears at the so-called MRS point where 
both streamwise velocity u and shear aulay simultaneously vanish in a coordinate 
system moving with separation. In  order to verify the MRS and singularity 
hypothesis, Telionis & Tsahalis (1974) performed a numerical integration of the 
boundary-layer equations in a number of flows, one of which is starting flow of a 
circular cylinder. For this problem they reached the conclusion that a singularity 
appears a t  t = 0.65 and 6 = 140". On the other hand, Cebeci (1979), after repeating 
this calculation by a Box scheme combined with a zigzag procedure, rightly claimed 
that the boundary layer is smooth a t  t = 0.65 and that their 'singularity' is a 
consequence of the numerical method. Nevertheless, after some controversy, the 
singularity hypothesis has ultimately been established by van Dommelen & Shen 
(1980). The history of the controversy is reviewed by Telionis (1981), Cebeci (1982), 
van Dommelen & Shen (1982) and Wang (1982). Employing Lagrangian coordinates 
instead of the usual Eulerian ones, van Dommelen & Shen (1980, 1982) verified that 
the singularity appears a t  t = 1.50 and 0 = 111" and derived an analytic structure 
of the singularity in the starting flow of a circular cylinder. Cowley (1983) confirmed 
the results of van Dommelen & Shen by recasting the classical series solution using 
rational functions. Wang (1982) contended that, just as in three-dimensional 
separation, the envelope of analogous limiting streamlines represents unsteady 
separation, and found out the location of separation fairly close to that of van 
Dommelen & Shen. Though the definition of Wang's analogy criterion of unsteady 
separation has no connection with singularity, i t  coincides with symptoms of 
singularity, such as rapid growth of boundary-layer thickness or sharp increase of 
normal velocity. 

Without analytical solution, i t  may not be straightforward to know where the 
singularity is located by the conventional numerical method. Van Dommelen & Shen 
elucidated that a stationary point in the Lagrangian dependent variable x implies 
a singular point in the dependent variable y through the continuity equation, and 
then u, blows up at this point. Cowley obtained an approximate analytic continuation 
of the extended classical series solution using continuous fractions and confirmed the 
development of the singularity by the presence of a simple pole on the positive real 
axis in the complex-time plane. In  this way they successfully represented the 
singularity by a stationary point in the Lagrangian variable or a simple pole of a 
rational function, which can be captured by numerical calculations without blow-up. 
Previous to these convincing pieces of evidence, Shen (1978), employing the patching 
procedure, drew the qualitative conclusion that wall shear can develop a singularity 
analogous to shock formation through a coalescence of characteristics. However, he 
could not give a quantitative answer, and mentioned the necessity of a momentum- 
integral formulation for reasonable accuracy and general applicability. 

One of the earliest and, until recently, most widely used approximate methods for 
the solution of boundary-layer equations is the momentum-integral method using 
one-parameter velocity profiles developed by Pohlhausen (1921). Schuh (1953) 
applied it to a general class of unsteady boundary layers including starting flow of 
a circular cylinder by reducing the momentum-integral equation to two simultaneous 
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ordinary differentia1 equations, one of which is an  ‘equation of characteristics ’. 
However, this method, giving reasonably accurate solutions in accelerated flow, has 
defects in that it fails for a strong adverse pressure gradient and predicts separation 
too late. For better accuracy, Tani (1954) employed an energy-integral equation‘ in 
addition to the momentum integral and dropped the compatibility condition on the 
wall. Lees & Reeves (1964) successfully applied Tani’s two-moment one-parameter 
integral method to a separating and reattaching laminar flow of boundary-layer- 
shock-wave interaction. Tani & Yu (1971) solved unsteady boundary layers by the 
two-moment method, specifying functional relations among the shape parameters 
directly without recourse to any specific velocity profiles. Matsushita & Akamatsu 
(1983) modified Tani’s method and applied it to the starting flow of a circular and 
an elliptic cylinder and obtained good results except for the region of large reversed 
flow. 

I n  this paper, extending Tani’s method, we propose a two-parameter integral 
method which is applicable to  two-dimensional laminar boundary layers whether they 
are separated or not. The second moment of the boundary-layer equation, obtained 
by integrating the boundary-layer equation multiplied by u2 across the layer, is 
employed as a governing equation in addition to the zeroth- and first-moment 
equations, i.e. momentum and energy integrals. The assumed velocity profiles are 
composed of two families: one is Falkner-Skan flow with slip, and the other is 
semisimilar trailing-edge flow analysed by Williams (1  982). The governing equation 
system being hyperbolic, a singular behaviour of an unsteady boundary layer with 
prescribed pressure distribution, such as, a8,/ax+co, is reducible to  the formation 
of a shock-like discontinuous solution through the coalescence of characteristics, as 
conjectured by Shen (1978). Within the framework of the one-parameter integral 
method, this fact has already been confirmed by Matsushita & Akamatsu (1984). For 
turbulent boundary layers, Cousteix & Houdeville (1981) found that the similar 
singularities are formed in the system of the entrainment and momentum integral. 
I n  order to capture the discontinuity, we utilize a dissipative finite-difference scheme, 
which is a familiar method in gas-dynamics, and examine the behaviour of charac- 
teristics. Thus we can numerically confirm the appearance of singularity without 
troublesome blow-up, as van Dommelen & Shen and Cowley have succeeded in doing 
by their own methods. Further, the present method gives an efficient and practical 
prediction of separation without stepwise computation of the complete boundary-layer 
equation. 

2. Governing equations 

are : 
The basic equations for unsteady two-dimensional incompressible boundary layers 

au au au au au a Z u  -+u-++-=-+u-++---, 
at ax ay at ax a y 2  

au a+ -+- = 0, ax ay 

where x and y are distances measured, respectively, along and normal to  the surface 
of the body, t is time, u and are the velocity components in the x- and y-directions 
respectively, U is the free-stream velocity just outside the boundary layer and v is 
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the kinematic viscosity. The boundary condition on u and v for impermeable walls 
are : 

1 u = 0,  w = 0, (y = O) ,  

u+u (y+oo). 

The free-stream velocity U = U(x ,  t )  is presumably known from a potential-flow 
analysis. 

Integrating the following equation for n = 0, 1, 2 across the boundary layer, we 
can derive the nth moment of the boundary-layer equation : 

equation ( 1 )  x (n+ 1)  un-equation ( 2 )  x ( U n + l - ~ n + l ) .  

The results are obtained as 

The zeroth and first moments of the momentum equation are termed the momentum 
and mechanical-energy integrals respectively. Here Si (i = 1,  . . . ,4) are boundary-layer 
thickness defined as follows : 

Q,, 6, and 8, are the displacement, momentum and energy thicknesses respectively. 
The wall shear stress 7, is defined as 

The following six shape parameters are constructed from the variables appearing 
in (4)-(6): 

The governing equations are rewritten in a non-dimensional conservation form using 
the above shape parameters : 

Wt +f, = z ,  (10) 



where 
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81 UES, 

W =  (E+1)6, 

[(F+l)s]’ ’=kj’ 

The shape parameters E and F appearing in the unsteady term wt of the (10) are 
selected as the independent parameters from among the ones in the (9). The others, 
G, S, B and Q ,  are specified as functions of the two parameters E and F through the 
assumed velocity profile. Then (lo), having three unknowns 6,, E and F, forms a closed 
governing equation system for the present integral method. 

3. Velocity-profile assumption 
The assumed velocity profiles in the present integral method are those of 

Falkner-Skan flows with slip and semisimilar flows in the vicinity of the trailing edge 
on bodies impulsively set into motion. These flows may be regarded as Falkner-Skan 
flows extended t o  unsteady flows or slipping flows so as to  make two-parameter 
velocity-profile families. 

3.1. Falkner-SkanJEows with slip 
The governing equation and boundary conditions for the Falkner-Skan flows with 
slip are as follows: 

y+jy+p( l - f2 )  = 0, (14) 

f(0) = 0, f ( 0 )  = u,, f’(a) = 1, (15) 

which forms a velocity-profile family of two-parameters p and U,. Though a 
systematic approach is given for this two-point boundary-value problem by Cebeci 
& Wilson (1972), we employed a simple shooting method with fourth-order Rung- 
Kutta method and obtained normalized velocity profiles in a coordinate system 
moving with a velocity U, by the transformation (f - U,)/( 1 - U,) (figure 1) .  Figure 2 
shows the velocity profiles obtained for U, = 0.4 and various values of p and the 
shape parameters E and F defined in $2. The velocity profiles have a monotonic 
correspondence along the curve off”(0) versus pplotted in figure 2 of Cebeci & Wilson 
(1972) but not to /3 itself. We obtained about 200 profiles for 9 values of U,  ranging 
from 0 to 0.8. I n  figure 5 pairs of E and F calculated from each velocity profile are 
plotted with triangular symbols. They are employed as input data for the interpolation 
of dependent parameters in $3.3. 

3.2. Trailing-edge %ow 

Williams (1982) has elucidated that boundary-layer flows in the vicinity of the sharp 
trailing edge of a symmetrical body (figure 3) impulsively set into motion have 
semisimilar solutions. They are also employed as the assumed velocity profile in the 
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u w  - 
FIGURE 1. Schematic velocity profile with slip velocity U ,  (left) and the corresponding profile 

seen in a coordinate system moving with the velocity U,. 

Uw = 0.4 

-0.42 -0,011 0.105 

-0.20 0.361 0:564 

0.457 0.745 

-1.0 -0.5 0 0.5 1 .o 
U 

FIGURE 2. Velocity profiles obtained from Falkner-Skan flow with slip for several values of p 
( U, = 0.4). 

present integral method. According to Williams, when the internal angle of the 
trailing edge is 27rm/(rn+l), the free-stream velocity is -cxm and the three 
independent variables (x, y, t )  can be reduced to the following two variables: 

6 = l-exp(-ccsm-lt), 7 = y - r3 
The reduced momentum equation and boundary condition become 

w(E,O) =f(6,0) = 0, w ( t , a )  = 1 ,  w(0,r )  = erf(7). (18) 
Here f is a non-dimensional stream function, and the coefficients al, . . . , a4 are given 
functions o f f ,  6,  7 and m. These equations define a velocity-profile family of 
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FIGURE 3. Flow geometry for flow near a rear stagnation point. 

m = 0.8 641 
48 , 

0.891 -0.014 0.146 

4 0.666 0.270 0.432 

0.011 0.413 0.659 

-1.0 -0.5 0 0.5 1 .o 
U 

FIGURE 4. Velocity profiles of a rear stagnation flow at several values of 6 (m = 0.8). 

two-parameters m and the specific variable 6.  We have solved them using an explicit 
finite-difference scheme proposed by Satofuka & Morinishi (1982) and obtained 
results for 24 values of m ranging from 0.2 to 1.3. The solutions are terminated at  
the vanishing of the coefficient a*. Figure 4 shows the velocity profiles for m = 0.8 
together with a table of parameters. We obtained about 500 data points from this 
family, which are plotted in figure 5 with square symbols and also utilized as input 
data for the interpolation of the dependent parameters. 

3.3. Shape parameters 

As already mentioned, figure 5 shows the plot of the shape parameters E and F 
obtained from the velocity profiles in $53.1 and 3.2. Table 1 gives the numerical values 
of the parameters for five representative data points from among these. Here 
separation I indicates the FalknerSkan flow with U,  = 0 and /3 = -0.1988, and 
separation I1 is the trailing-edge flow of m = 1 at 7 = & In (1 - g) = 0.32, both of which 
have zero wall shear. 

Figure 5 indicates that the one-to-one correspondence between E and F existing 
in the attached-flow region ( E  > 0.3) disappears in the separated-flow region of 
smaller values of E and F .  Figure 6 compares the velocity profiles for a common value 
of E and different values of F. The velocity profiles for larger values of F have a 
reversed-flow region nearer the wall and larger peak velocities. Thus i t  is concluded 
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1 

D trailing-edge flow i 
A Falkner-Skan flow 

-0.4 -0.2 0 0.2 0.4 0.6 

E 

FIQURE 5. Plot of the shape parameters (E, F) obtained from the velocity profiles of 
Falkner-Skan flow and trailing-edge flow. 

E F 

Hiemenz 0.4512 0.7336 
Blasius 0.3859 0.6069 
Rayleigh 0.4142 0.6624 
Separation I 0.2482 0.3760 
Separation I1 0.3223 0.5080 

TABLE 1.  Shape parameters for representative flows 

value of E. 
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FIGURE 7. Functional 
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FIQURE 8. Functional relations between independent parameters ( E ,  F )  and a dependent 
parameter S.  
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FIGURE 9. Functional relations between independent parameters ( E ,  F )  and a dependent 

parameter R. 
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FIGURE 10. Functional relations between independent parameters ( E ,  F )  and a dependent 
parameter &. 
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that  in separated flows the two-parameter approach is indispensable in the integral 
method. 

The curved surfaces shown in figures 7-10 indicate functional relations between 
independent parameters E,  F and dependent parameters G, S, B,  Q (henceforth 
designated as h).  They are obtained by the interpolation of h based on the data points 
shown in figure 5. The interpolated values of h on the point (I?, P )  are calculated by 
locally fitting the following quadratic surface with the data points located at a 
distance less than some appropriate value r from the point ( P ,  P )  : 

h = aE2+bEF+cF2+dE+eF+f.  (19) 

The coefficients a,  . . . , fare determined by the method of least squares using weighting 
functions inversely proportional to the distances between data points and the 
interpolated point (3, P )  with a view of obtaining stronger dependence on the nearer 
data point. The radius r is selected after some trials in order that  the circle may 
include about 20 data points in the attached flow region and about 50 data points 
in the separated flow region. 

4. Nature of governing equations and separation 
4.1. Separation in steady flow 

For steady flow the governing equation (10)  becomes f, = z and may be rewritten 
as 

where 

A = U  
- 1  1 0  
- 1  0 1  

G - ( E + l ) G , - ( P + l ) G F  G, GF 

The suffices E and F in (21) denote partial differentiation. The determinant d of the 

Figure 1 1  shows the trajectories of d = 0 and B = 0 (7, = 0) on the (E ,  F)-plane. The 
two curves being coincident, the system of governing equations becomes singular a t  
separation in steady flow. As is generally known, this singular behaviour is also 
observed in the one-parameter integral method (Moses et al. 1978; Matsushita & 
Akamatsu 1983), as well as in the original boundary-layer equation (Goldstein 1948). 

As sample calculations, the present method is applied to a linearly retarded flow 
and a flow past a circular cylinder. The free-stream velocity is U = 1 - x in the former, 
and the results are shown in figure 12 together with the series solution of Howarth 
(1938). Figure 13 compares the results of the latter (free-stream velocity U = 2 sino) 
with the exact numerical solution of Terril (1960). Both of the present results agrees 
fairly well with the exact solutions, and the separation points of C, = 0 correspond 
to the singular points of A = 0 .  
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FIGURE 11. Trajectories of A = 0 and B = 0 on ( E ,  F)-plane. 

4.2. Characteristics of governing equations and unsteady separation 

In  this subsection some mathematical characteristics of the governing equation 
system related to unsteady separation are considered. Equations (lo)-( 13) can be 
rewritten as a quasi-linear system 

w,+Aw,  = z’, (24) 

A X I U - '  

FIGURE 12. Comparison of the present approximate solution with Howarth's exact solution for 
the case of a linearly retarded flow. 
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XlX 
FIGURE 13. Comparison of the present approximate solution with Terril’s exact solution for 

steady flow over a circular cylinder. 

where A and z’ are given by (21) and (22) .  The characteristic equation of this system 
is 

de t (A-h/ )=h3+U 

(25)  

where I is the unit matrix. Assuming the functional relation between G and (E ,  F )  
shown in figure 7 ,  i t  is confirmed that the characteristic equation always has three 
distinct real roots and the system is hyperbolic. As mentioned in $4.1, the velocity 
profiles of zero wall shear ( B  = 0) also have A = 0, which corresponds to  h / U  = 0 but 
not necessarily to a singularity in unsteady flow. Further, the velocity profiles with 
reversed flow ( B  < 0) have a t  least one negative characteristic direction, which 
corresponds to  an influence travelling from downstream to upstream. These charac- 
teristic families form envelopes on the (z, t)-plane in particular circumstances, across 
which certain boundary-layer quantities have a discontinuity identified with the 
separation singularity in unsteady flow. The convective operator in the original 
boundary-layer equation is responsible for the generation of the singularity, and the 
diffusion operator merely in the y-direction cannot eliminate it at all. The separation 
singularity may develop in a finite time in a field initially without singularities, like 
shock formation in gasdynamics. 

5. Results and discussion 
The present integral method is applied to the unsteady boundary layers over a 

circular and an elliptic cylinder impulsively started from rest. In  order to solve (10) 
numerically, the first-order upwind scheme is employed in the attached-flow region, 
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4 
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F 0.4- 
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-0.4 -0.2 0 0.2 0.4 0.6 

E 
FIGURE 14. The time-varying (E, F)-curve for the starting flow of a circular cylinder 
impulsively set in motion. The background dots are identical with those in figure 5. 

where all the characteristics have positive signs, and the Lax scheme, having central 
differences in the space direction, is utilized in the reversed-flow region, where the 
characteristics have mixed signs. For the starting flow of cylinders, there exist full 
numerical solutions of the Navier-Stokes equations (e.g. Ta Phuoc Loc 1980; Lugt 
& Haussling 1974) as well as those of the complete boundary-layer equations (Cebeci 
1979; van Dommelen & Shen 1980; Telionis & Tsahalis 1974). Both solutions agree 
for the case of large Reynolds numbers and initial stage of motions. However, at larger 
times, the boundary-layer solutions assuming an unchangeable free-stream velocity 
distribution deviate from the Navier-Stokes solutions. The results of the present 
integral method are compared with the numerical or analytical solutions of the 
complete boundary-layer equations in the following. 

5.1. Circular cylinder 
The non-dimensional free-stream velocity around the circular cylinder is given by the 
potential-flow theory as 

where x is the streamwise coordinate measured along the surface of the cylinder from 
the forward stagnation point and normalized by the radius of the cylinder. The 
free-stream velocity U is normalized by the external flow velocity. Initially the 
cylinder is assumed to be covered entirely with a boundary layer of Rayleigh type. 
Then the initial conditions for the present problem are 

U = 2 sinx, (26) 

6, = (BRAt)i ,  E = ER, F = FR, ( t  = At), (27 1 
where the suffix R denotes the values for Rayleigh flow shown in table 1 .  A linear 
extrapolation is used as a numerical boundary condition. The numerical calculations 



Boundary-layer separation in unsteady jlows 491 
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XlX 

FIGURE 15. The distribution of displacement thickness at various instants for a circular 
cylinder impulsively set in motion. 

van Dommelen 
& Shen 

0 0.2 0.4 0.6 0.8 1 .o 
XI% 

FIGURE 16. The distribution of skin-friction coefficient at various instants for the circular 
cylinder. 

are carried out up to t = 1.6 with the step sizes At = 0.004 and Ax = &n. The 
time-varying shape parameters E and F with the interval 0.1 are shown in figure 14 
by solid lines. The curve, initially only one point of (ER,  FB), stretches longer, and 
gradually the one-to-one correspondence between E and F disappears in largely 
reversed flow (typically E < 0). Thus the one-parameter integral method assuming 
one-to-one correspondence between E and F turns out to be inappropriate for treating 
the boundary layer with largely reversed flow. Figure 15 shows the time-varying 
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0 0.2 0.4 0.6 0.8 1 .O 

XlX 

FIGURE 17. Comparison of the profiles of displacement thickness for different grid spacings 
shown in table 2. 

AX At 

A ihn 0.004 

C kn 0.008 

TABLE 2. Grid spacings used in the examination of their effects 

B ihn 0.002 

profiles of displacement thickness with exact numerical solutions by Cebeci (1979) 
fort = 0.1, 0.3,0.5, 0.7 and 1.0 and by van Dommelen & Shen (1980) fort = 0.7, 1.0, 
1.25 and 1.4. The present result agrees quite well with others, especially for t < 1.0, 
and Cebeci’s results are invisible because of overlapping. Figure 16 shows the 
distribution of skin-friction coefficient at  various instants with the results of Cebeci 
for t = 0.1,0.2, 0.5, 1 .O and 1.25 and those of van Dommelen & Shen for t = 0.2, 0.4, 
0.6 and 1.0. In figure 17 the effects of grid spacing on the profiles of displacement 
thickness are examined for three cases shown in table 2. The results for cases A and 
B coincide in graphical accuracy, and that for case C gives a slightly smaller hump 
near the singularity because of larger numerical dissipation proportional to Ax. The 
present method allows integration past the time t = 1.5 corresponding to singularity 
according to van Dommelen & Shen. This means that for t > 1.5 the discontinuous 
profiles, which are weak solutions of the hyperbolic system, are captured numerically 
by the dissipative finite-difference scheme without blow-up apart from the physical 
relevance. Using Keller’s box method modified by the zigzag differencing scheme 
when there were reversed-flow regions, Cebeci obtained a solution without singularity 
fort < 1.4. van Dommelen & Shen treated the boundary-layer equations in Lagrangian 
coordinate using a Crank-Nicolson scheme. The present method, being an efficient 
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0.0 0 

FIGURE 18. Plot of the C, characteristics for a circular cylinder impulsively set in motion. 

0 0.2 0.4 0.6 0.8 1 .0 

XlX 
FIGURE 19. Plot of the C,  characteristics for the circular cylinder. 

approximate method, gives excellent results by no means inferior to  the exact 
methods. 

In  figures 18, 19 and 20 the C,, C, ,  C ,  characteristics are shown by solid lines and 
the trajectory of the point of vanishing wall shear stress is shown by dashed lines. 
The open circles in the figures are the stationary points of the Lagrangian dependent 
variable x found by van Dommelen & Shen and identified with the formation of 
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FIGURE 20. Plot of the C, characteristics for the circular cylinder. 
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FIGURE 21. Locus of the point of vanishing wall shear stress for the circular cylinder. 

separation singularity in unsteady flow. The characteristics Ci are drawn by 
numerically integrating the equation dxldt = hi (i = 1 , 2 , 3 ) ,  where the values of hi 
are interpolated based on the data on the grid points previously calculated by the 
finite-difference method. I n  the attached-flow region, namely the lower or left side 
of the dashed line, all the characteristics have positive values. Figure 18 shows that 
A, has negative values in the reversed-flow region, and the locus of A, = 0 is identified 
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23. Potential-flow velocity distribution on the elliptic cylinder. 

with that of vanishing wall shear. Further, the C, characteristics family form an 
envelope very near x = 0.618n, t = 1.5 of van Dommelen & Shen's singular point. I n  
figure 19 C, similarly form an envelope, but the locus of A, = 0 has no definite physical 
meaning, unlike C,. I n  figure 20 C ,  always have positive directions and form no 
envelope. I n  figure 21 the locus of the point of vanishing wall shear stress of the 
present result is compared with those of Cebeci and first-order (Blasius 1908) and 
second-order (Goldstein & Rosenhead 1936) series solutions. The present result agrees 
quite well with those of Cebeci and Goldstein & Rosenhead. 

J 

5.2. Elliptic cylinder 

The starting flow of an elliptic cylinder is also investigated by the present integral 
method. I n  this problem, like the flows around practical airfoils, leading-edge 
separation and stall will occur a t  somewhat larger incidence angle. The contour of 
an elliptic cylinder of thickness ratio 0.5 is depicted in figure 22. When the incidence 
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FIGURE 24. Computed results of displacement thickness for the elliptic cylinder impulsively set 
in motion a t  the incidence angle a = in. 
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FIGURE 25. Computed results of skin-friction coefficient for an elliptic cylinder a t  the incidence 
angle a = $71. 

angle is 01, the free-stream velocity distribution around the cylinder is given by the - 
potential-flow theory as 13 sin (8-cc)l 

(4 sin2 6 + cos2 6)t ' 
U =  

The streamwise coordinate x along the body surface is given by 
0 

[+(4 sin2 6 + cos2 8)]:  d8/L , 
= li,. 
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FIGURE 27. Computed results of displacement thickness for the elliptic cylinder at the incidence 
angle a = 0 . 3 ~ .  

where the origin of this coordinate is the forward stagnation point 8 = a+n and L 
is a half-circuit length of the cylinder. The free-stream velocity distributions for the 
incidence angles in and 0.3n (upper and lower surface) are shown in figure 23. The 
initial and boundary condition are the same as in the case of the circular cylinder. 

Figures 24-26 show the results when the incidence angle a = n/2. The time-varying 
profiles of displacement thickness (figure 24) and skin-friction coefficient (figure 25)  
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FIQURE 28. Computed results of skin-friction coefficient for the elliptic cylinder a t  the incidence 
angle a = 0 . 3 ~ .  
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FIGURE 29. Comparison of the displacement thickness with the results of Telionis & Tsahalis 
(1974) for the elliptic cylinder a t  the incidence angle a = 0 . 3 ~ .  

show that in the attached region the boundary layer rapidly converges to the steady 
solution denoted by dashed lines (hard to see because of overlapping), whereas i t  
continues to develop in the separated region. In figure 26 C, characteristics and the 
locus of the point of vanishing wall shear are shown by solid and dashed lines 
respectively. A separation bubble appears at  t = 0.06, then grows larger and finally 
coalesces with the other symmetric one at  t = 0.19. The envelope of the characteristics 
is formed at the forward zero-wall-shear point prior to the coalescence of the bubbles. 
Figures 27-32 show the results when the incidence angle a = 0 . 3 ~ .  Since the flow field 
becomes asymmetric, the calculations on the upper surface (0 < z < 1 )  and the lower 
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FIGURE 31. The detailed C, characteristics in the neighbourhood of focusing on the lower 
surface of the elliptic cylinder at the incidence angle a = 0 . 3 ~ .  

surface (1 < 2 < 2) were performed separately and the results were plotted 
successively. All of them match perfectly at the rear stagnation point 2 = 1, B = 0.3n. 
Figures 27 and 28 show the time-varying profiles of displacement thickness and 
skin-friction coefficient plotted at  regular time intervals. Figure 29 compares the 
present results with those of Telionis & Tsahalis (1974). In figure 30 the locus of the 
point of vanishing wall shear shows that a separation bubble firstly appears on the 
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lower surface a t  t = 0.045, subsequently on the upper surface a t  t = 0.13, and finally 
they coalesce at t = 0.22. Figure 31 show the detailed C ,  characteristics in the 
neighbourhood of focusing on the lower surface. Figure 32 compares the locus of the 
point of vanishing wall shear stress. The present result agrees well with that of 
Telionis and Goldstein & Rosenhead. 

6. Conclusions 
A two-parameter integral method has been presented which is applicable even to 

separated boundary layers. The governing equation system, which consists of three 
moment equations of the boundary-layer equation, was confirmed to be classified as 
a quasi-linear hyperbolic system under the assumed velocity-profile families. It was 
numerically solved by a dissipative finite-difference scheme in order to capture a 
discontinuous solution associated with the singularity of unsteady separation. The 
generation of the singularity was ascertained as formation of the envelope of the 
characteristics which were drawn based on the calculated results of the shape 
parameters. The starting flows of a circular and an elliptic cylinder were considered 
as definite examples. The present method was proved to give excellent results, in 
comparison with theexact methods, not only for practically important boundary-layer 
quantities, such as displacement thickness or skin-friction coefficient, but also for 
generation of separation singularity. 

Professor I. Tani is thanked for his helpful comments on the work. 
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